Lecture 4 - Velocity Addition

A Puzzle...

In each of the following four scenarios, v_{2} is the speed of frame S^{\prime} with respect to frame S, and within S^{\prime} a ball is moving with speed v_{1}. What is the speed of the ball with respect to frame S in each case?

S
C

S

S

S

Solution

- Part A: This is the velocity addition formula we discussed last time, $u_{A}=\frac{v_{1}+v_{2}}{1+\frac{v_{1} v_{2}}{c^{2}}}$
- Part B: In this case we let $v_{2} \rightarrow-v_{2}$ in the velocity addition formula, $u_{B}=\frac{v_{1}-v_{2}}{1-\frac{v_{1} v_{2}}{c^{2}}}$. Since $v_{1} v_{2}<c^{2}$, the denominator is positive. Thus $u>0$ if $v_{1}>v_{2}$ and $u<0$ if $v_{1}<v_{2}$, as we would also expect from low-speed (nonrelativistic) velocity addition.
- Part C: In this case we let $v_{1} \rightarrow-v_{1}$ in the velocity addition formula, $u_{C}=\frac{-v_{1}+v_{2}}{1-\frac{v_{1} v_{2}}{c^{2}}}$. Note that $u_{C}=-u_{B}$, as expected.
- Part D: Here we set both $v_{1} \rightarrow-v_{1}$ and $v_{2} \rightarrow-v_{2}$ in the velocity addition formula, $u_{D}=\frac{-v_{1}-v_{2}}{1+\frac{v_{1} v_{2}}{c^{2}}}$. Note that $u_{D}=-u_{A}$, as expected.

Time Dilation and Length Contraction Recap

More Equal Speeds

Example

A moves at speed v_{A}, and B is at rest. At what speed v_{C} must C travel, so that she sees A and B approaching her at the same rate?

Suppose that A and C arrive at B at the same time. In the lab frame (B 's frame), what is the ratio of the distances $C B$ and $A C$? (The answer to this is very nice and clean. In such cases, you should think of a simple, intuitive explanation for the result!)

Solution

Denote A 's, B 's, and C 's speeds by v_{A}, v_{B}, and v_{C}, respectively. Let us boost all of the speeds by v_{C} to the left to go into C 's frame.
Let's begin with the two easy ones. Boosting C 's speed to the left will result in no velocity, by construction. Next, since B is at rest, boosting its speed by v_{C} to the left yields the speed v_{C} pointing to the right (or a speed v_{C} pointing to the left). Finally, boosting A 's speed to the left by v_{C} yields the velocity $\frac{v_{A}-v_{C}}{1-\frac{v_{V} v_{C}}{c^{2}}}$ pointing to the right. In order for A and B to approach C at the same speed from both directions, we must have

$$
\begin{equation*}
\frac{v_{A}-v_{C}}{1-\frac{v_{A} v_{C}}{c^{2}}}=v_{C} \tag{1}
\end{equation*}
$$

Solving this using Mathematica,

$$
\begin{aligned}
& \text { Simplify }\left[\text { Solve }\left[\frac{v A-v C}{1-\frac{v A v c}{c^{2}}}=v c, v c\right], c>0\right] \\
& \left\{\left\{v C \rightarrow \frac{c\left(c-\sqrt{c^{2}-v A^{2}}\right)}{v A}\right\},\left\{v C \rightarrow \frac{c\left(c+\sqrt{c^{2}-v A^{2}}\right)}{v A}\right\}\right\}
\end{aligned}
$$

Of the two solutions $v_{C}=\frac{c^{2}}{v_{A}}\left(1 \pm\left\{1-\left(\frac{v_{A}}{c}\right)^{2}\right\}^{1 / 2}\right)$, only the minus sign solution is physical (i.e. less than c), and hence the speed at which C must travel is $v_{C}=\frac{c^{2}}{v_{A}}\left(1-\left\{1-\left(\frac{v_{A}}{c}\right)^{2}\right\}^{1 / 2}\right)$.

If A and C arrive at B at the same time (note that the two events $-A$ arriving at B and C arriving at B - occur at the same time and place; therefore they occur simultaneously in all frames), then the ratio of the distances will equal

$$
\begin{align*}
\frac{C B}{A C} & =\frac{v_{C}-v_{B}}{v_{A}-v_{C}} \\
& =\frac{\frac{c^{2}}{v_{A}}\left(1-\left\{1-\left(\frac{v_{A}}{c}\right)^{2}\right\}^{1 / 2}\right)}{v_{A}-\frac{c^{2}}{v_{A}}\left(1-\left\{1-\left(\frac{v_{A}}{c}\right)^{2}\right\}^{1 / 2}\right)} \\
& =\frac{1-\left\{1-\left(\frac{v_{A}}{c}\right)^{2}\right\}^{1 / 2}}{\left(\frac{v_{A}}{c}\right)^{2}-\left(1-\left\{1-\left(\frac{v_{A}}{c}\right)^{2}\right\}^{1 / 2}\right)} \quad \text { (see comment below) } \tag{2}\\
& =\frac{1}{\left\{1-\left(\frac{v_{A}}{c}\right)^{2}\right\}^{1 / 2}} \\
& =\gamma_{A}
\end{align*}
$$

where in the third step we divided by $\left(1-\left\{1-\left(\frac{v_{A}}{c}\right)^{2}\right\}^{1 / 2}\right)$ and used the relation

$$
\begin{equation*}
\left(1-\left\{1-\left(\frac{v_{A}}{c}\right)^{2}\right\}^{1 / 2}\right)\left(1+\left\{1-\left(\frac{v_{A}}{c}\right)^{2}\right\}^{1 / 2}\right)=1-\left\{1-\left(\frac{v_{A}}{c}\right)^{2}\right\}=\left(\frac{v_{A}}{c}\right)^{2} \tag{3}
\end{equation*}
$$

while in the last step we defined

$$
\begin{equation*}
\gamma_{A}=\frac{1}{\left\{1-\left(\frac{v_{A}}{c}\right)^{2}\right\}^{1 / 2}} \tag{4}
\end{equation*}
$$

to be A 's γ factor in B 's frame. This implies that C is γ_{A} as far from B as she is from A. Note that for non-relativis-
tic speeds $v \ll c, \gamma_{A} \approx 1$ and $v_{C}=\frac{v_{A}}{2}$ so that C is midway between A and B.
You may (or at least should) be wondering why in the world $\frac{C B}{A C}=\gamma_{A}$ is such a simple relation. In physics, getting
such clean results demands a correspondingly simple explanation. Simple answers imply that if we had considered the problem from a different perspective, we should have easily been able to deduce that $\frac{C B}{A C}=\gamma_{A}$.
Here is one intuitive reason why the value of $\frac{C B}{A C}$ must come out to be the clean result γ_{A}. Imagine that in C^{\prime} 's frame, A and B are carrying identical jousting sticks as they run toward C; by the problem setup it is clear that the tips of both sticks will hit C simultaneously in this frame. Because those two events occur simultaneously at the same point in C 's frame, they occur simultaneously in all frames...including B 's frame! But in B 's frame, B 's stick is uncontracted, while A 's stick is length-contracted by a factor γ_{A}. So when the tips of the two sticks touch C simultaneously, this forces A to be closer to C than B is by a factor γ_{A}, as desired.

The Triplet Paradox

Example

Consider the following variation of the twin paradox. A, B, and C each have a clock. In A 's reference frame, B flies past A with speed v to the right. When B passes A, they both set their clocks to zero. Also, in A 's reference frame, C starts far to the right and moves to the left with speed v. When B and C pass each other, C sets his clock to read the same as B 's. Finally, when C passes A, they compare the readings on their clocks. At this event, let A 's clock read T_{A}, and let C 's clock read T_{C}. Define $\gamma=\frac{1}{\left(1-\frac{v^{2}}{c^{2}}\right)^{1 / 2}}$.
(a) Working in A 's frame, show that $T_{C}=T_{A} / \gamma$
(b) Working in B 's frame, show again that $T_{C}=T_{A} / \gamma$
(c) Working in C 's frame, show again that $T_{C}=T_{A} / \gamma$

Solution

Part (a): Let the starting distance between A and C at time $t=0$ be $2 d$. In A 's reference frame, B and C will meet each other a distance d away from clock A, with both of these clocks moving at speed v. B 's clock will be running slow by a factor of γ, so it will be showing a time $\frac{d}{v \gamma}$ when B and C meet, and transfer this time over to C.

The time it takes for B and C to meet will equal the time it subsequently takes for A to meet C, since both B and C travel at speed v, and clock C is now retracing B 's path. Since C is moving at speed v, the time $\frac{d}{v \gamma}$ will elapse on clock C between the time it meets clock B and clock A. Therefore, C 's clock will ultimately read $T_{C}=\frac{2 d}{v \gamma}$. Throughout this entire time, A 's clock will read the same amount of time, but without the time dilation factor, $T_{A}=\frac{2 d}{v}$.
Therefore, $T_{C}=T_{A} / \gamma$.
Part (b): Now let's looks at things in B 's frame, where A moves away from B at velocity v while C chases A at a velocity given by relativistically adding speed v with v. Let B 's clock read t_{B} when he meets C. Then at this time, B hands off the time t_{B} to C, and B sees A 's clock read $\frac{t_{B}}{\gamma}$.
We must now determine how much additional time elapses on A 's clock and C 's clock, by the time they meet. From the velocity-addition formula, B sees C flying by to the left at speed $v_{2} \equiv \frac{2 v}{1+\frac{v^{2}}{c^{2}}}$. He also sees A fly by to the left at speed v, but A had a head-start of $v t_{B}$ in front of C. Therefore, if \tilde{t} is the time between the meeting of B and C and the meeting of A and C (as viewed from B), then $v t_{B}=\left(v_{2}-v\right) \tilde{t}$. During this time, A 's time increases by $\frac{\tilde{t}}{\gamma}$ while C 's clock increases by $\frac{\tilde{t}}{\gamma_{2}}$ where $\gamma_{2}=\frac{1}{\left(1-\frac{v}{c^{2}}\right)^{1 / 2}}$. Thus the total time on clock A is

$$
\begin{align*}
T_{A} & =\frac{t_{B}}{\gamma}+\frac{\tilde{t}}{\gamma} \\
& =\frac{t_{B}}{\gamma}+t_{B} \frac{v}{\left(v_{2}-v\right) \gamma} \\
& =\frac{t_{B}}{\gamma}\left(1+\frac{1+\frac{v^{2}}{c^{2}}}{1-\frac{v^{2}}{c^{2}}}\right) \tag{5}\\
& =2 \gamma t_{B}
\end{align*}
$$

The total time on clock C reads (after some algebra)

$$
\begin{align*}
T_{C} & =t_{B}+\frac{\tilde{t}}{\gamma_{2}} \\
& =t_{B}+\tilde{t} \frac{1-v^{2}}{1+v^{2}} \tag{6}\\
& =t_{B}+t_{B} \frac{1+v^{2}}{1-v^{2}} \frac{1-v^{2}}{1+v^{2}} \\
& =2 t_{B}
\end{align*}
$$

Therefore, $T_{C}=T_{A} / \gamma$.
Part (c): In C 's frame, A and B both approach C, but B does so faster, moving at a velocity of $v_{2} \equiv \frac{2 v}{1+\frac{v^{2}}{c^{2}}}$ as found in Part b. Denote the starting distance between B and C to be $\tilde{d} \equiv \frac{2 d}{\gamma}$ (the length contraction of the distance discussed in Part a (although since we want the ratio of T_{A} to T_{C} this length contraction cancels out)). Then B and C meet at time $\frac{\tilde{d}}{v_{2}}$ (as measured by a stationary observer in C 's reference frame), at which point B 's clock reads $\frac{\tilde{d}}{v_{2} \gamma_{2}}$, which is the time that B passes off to C. It then takes a time $\frac{\tilde{d}}{v}-\frac{\tilde{d}}{v_{2}}$ for clock A to reach C, which means that C will ultimately read (after some messy algebra, which should simply be done in Mathematica)

$$
\begin{align*}
T_{C} & =\frac{\tilde{d}}{v_{2} \gamma_{2}}+\frac{\tilde{d}}{v}-\frac{\tilde{d}}{v_{2}} \\
& =\frac{\tilde{d}}{v}\left(\frac{v+v_{2} \gamma_{2}-v \gamma_{2}}{v_{2} \gamma_{2}}\right) \tag{7}\\
& =\frac{\tilde{d}}{v \gamma^{2}}
\end{align*}
$$

Fullsimplify $\left[\frac{d}{v \gamma^{2}}==\left(\frac{d}{v 2 \gamma^{2}}+\frac{d}{v}-\frac{d}{v 2}\right) / \cdot \gamma^{2} \rightarrow \frac{1}{\sqrt{1-\frac{v^{2} c^{2}}{c^{2}}}} / \cdot \gamma \rightarrow \frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} / . v 2 \rightarrow \frac{2 v}{1+\frac{v^{2}}{c^{2}}}\right.$, Assumptions $\left.\rightarrow \theta<v<c\right]$
True
The total time it takes for A to reach C (as measured in C^{\prime} s frame) equals $\frac{\tilde{d}}{v}$, and due to A 's speed v the final time that A reads will be

$$
\begin{equation*}
T_{A}=\frac{\tilde{d}}{v \gamma} \tag{8}
\end{equation*}
$$

Therefore, $T_{C}=T_{A} / \gamma$.

Moving at the Speed of Light

One of the interesting quirks about the velocity addition formula is that if you start off moving at c in one frame, then you move in c in another frame. This begs some interesting questions, such as what happens if you accelerate a car to the speed of light, and you turn on your headlights. Would the light move at speed c relative to you, would it all pool inside of the headlight, or would something altogether different happen? Michael Stevens has an amazing YouTube video analyzing this very question.

